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Abstract We present a validation study of fifteen new math anxiety scale items de-
signed to augment the widely-used Revised Mathematics Anxiety Scale (RMARS).
While the RMARS and other standard instruments measure students’ anxiety in
response to computation, test situations, and math course activities such as buy-
ing a textbook or watching a lecture, the new items address students’ anxiety
in response to doing mathematics in an active and interactive classroom. With
a survey sample of 132 future teachers enrolled at colleges and universities, we
use exploratory and confirmatory factor analyses to groups the fifteen new items
into three new dimensions of math anxiety: Problem-Solving Anxiety, Explanation
Anxiety, and Explanation with Internal Doubt Anxiety. Further, Cronbach’s alpha
for the overall scale, as well as for each dimension individually, are all between 0.9
and .95, indicating internal consistency.

1 Introduction

Researchers have long been concerned with measuring math anxiety and its effects
on math performance through emotional, physiological, or behavioral mechanisms
(e.g., [Novak & Tassell, |2017; |Ashcraft & Moore, 2009} |Ashcraft & Krause, 2007;
Ashcraft] [2002} |Ashcraft & Kirkl [2001} [Hopko, Ashcraft, Gute, Ruggiero, & Lewis,
1998 [Hembree, [1990). As mathematicians and college math instructors, our inter-
est in math anxiety centers less on physiological and behavioral manifestations and
more on the socio-cultural practice of doing mathematics in our classrooms. For ex-
ample, how does math anziety affect students’ ability to participate in our classrooms?
And what can we do about it? How might students’ math anziety inform our assessment
decisions? Which practices of doing mathematics induce anziety in our students? For
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students who are training to be teachers, how does anziety around math practices
in our classrooms relate to the math practices they choose to implement (or not) in
their own future classrooms? To facilitate the study of these kinds of questions, our
overall goal in this paper is to put forth additional, validated items for measuring
math anxiety that further illuminate the multidimensionality of the construct and
allow for more nuanced studies of its effects, particularly in a student-centered
mathematics classroom. The items we developed are applicable to a broad range
of undergraduate mathematics settings, and especially to pre-service teachers.

In 1972, the psychologists |Richardson & Suinn| defined math anxiety as

a feeling of tension and anxiety that interferes with the manipulation of
numbers and the solving of mathematical problems in a wide variety of
ordinary life and academic situations. (p. 551)

This definition was given alongside a 98-item inventory to measure the construct:
the Mathematics Anxiety Rating Scale, or MARS. Currently, the most commonly
used instruments for measuring math anxiety are revisions of this 1972 scale
(Alexander & Martray, [1989; [Ferguson, (1986; |Plake & Parker, [1982; |Resnick,
Viehe, & Segal, [1982). These all consist of Likert-scale questions that ask respon-
dents to rate their level of anxiety in various situations on a scale from 1 (“not at
all”) to 5 (“very much”). Using various versions of the MARS instrument, multiple
studies have found the math anxiety construct to be multidimensional (see Table
. While it is well-established what aspects of math anxiety the MARS-based
inventories measure, an examination of the items shows that they fail to capture
the full spectrum either of what it means to do “solve mathematical problems” or
of mathematical “academic situations” students are likely to encounter today. As
trained mathematicians and involved in post-secondary mathematics pedagogy,
the authors feel particularly qualified to address this issueEl

To demonstrate these disciplinary and pedagogical differences, Figure[I] presents
some example items from an existing instrument—the Revised Mathematics Anx-
iety Rating Scale, or RMARS (Alexander & Martray, |1989)—in comparison to
some of our newly proposed items. The RMARS items rely on assumptions that

MARS/RMARS Items
- Watching a teacher work an algebraic equation on the blackboard.
- Thinking about an upcoming math test one day before.
- Listening to a lecture in math class.
- Being given a set of division problems to solve.

New (MEARS) Items
- Being asked to solve a math problem when you are not sure which formulas to use.
- Being asked to further justify why your mathematical solution is correct to a classmate
who is not yet convinced.
- Sharing your solution with a small group of classmates when you are not sure it is
correct.

Fig. 1 Selected items from the (Revised) Mathematics Anxiety Rating Scale (R/MARS) and
from the new Mathematics Engagement Anxiety Rating Scale (MEARS).

I To our knowledge, no mathematicians have been involved in the creation of any of the other instru-
ments designed to measure math anxiety.
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(a) mathematics as a discipline consists of rote computations and procedures, and
(b) that a mathematics classroom is centered on lectures and exams. Our items, in
contrast, attempt to add a richer picture of mathematics that includes (a’) solving
novel problems, including those for which you do not know where to start and (b’)
more diverse and progressive classroom situations, including giving mathematical
justifications and explanations to peers.

In this paper, we first examine the definition of math anxiety (see especially
7 focusing on contemporary interpretations of “solving mathematical prob-
lems” and “academic situations”. Based on this literature review and our own
experiences teaching college mathematics, we propose additional items (see
to augment the existing most-used instrument for measuring math anxiety, the
aforementioned RMARS. Our new 15-item inventory—the Mathematics Engage-
ment Anxiety Rating Scale (MEARS)—was written with two constructs and five
sub-constructs in mind. The two main constructs we intended to measure are Prob-
lem Solving Anziety (a feeling of anxiety in response to encountering conceptually
difficult or novel math problems, or from the length of problems), and Ezplana-
tion Anziety (a feeling of anxiety in anticipation of or response to explaining one’s
mathematical ideas to others). The central sections of the paper report a factor
analysis and validation of these new items (see Methods and Results in §3| and
, based on data from 132 pre-service teachers at colleges and universities. Ex-
ploratory and confirmatory factor analysis of this data grouped the 15 MEARS
items into three factors: our original two constructs of Problem Solving Anxi-
ety and Explanation Anxiety and, separately, Explanation with Internal Doubt
Anxiety—originally designed as a sub-construct of Explanation Anxietyﬂ Further
exploratory factor analyses show that these factors are distinct from those in the
Revised Mathematics Anxiety Rating Scale (RMARS) instrument, and that they
are also distinct from general anxiety as measured by the State-Trait Anxiety
Inventory (STAI).

2 Literature Review

The bulk of this Literature Review ( is dedicated to digging deeper into two
key phrases in the definition of math anxiety (see page 2)—*“solving of mathemat-
ical problems” and “academic situations”—and how our understanding of these
terms should inform the way we measure math anxiety. Before dissecting this def-
inition, we start with an overview of how math anxiety has traditionally been
measured and what dimensions of math anxiety have repeatedly been identified
(. These two pieces—the dimensionality of math anxiety and a deeper look
into the subtleties of its definition—frame the current study’s addition of new di-
mensions to our understanding of math anxiety. Finally, since we piloted our new
instrument on a very specific population—future elementary teachers—we outline
some of the literature related to math anxiety in this special population and why
it is of particular interest (§2.3).

2 These sub-constructs are described in Section
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2.1 A Short History of Measuring Math Anxiety

In a seminal 1972 paper, Richardson and Suinn developed a general purpose in-
strument for assessing math anxiety: the 98-item Mathematics Anxiety Rating
Scale (MARS)EI In this survey, respondents rate the amount of anxiety they feel
in various situations on a Likert scale from 1 (“not at all”) to 5 (“very much”).
These scenarios range from everyday life (e.g., “reading a cash register receipt after
your purchase”) to academic (e.g., “realizing you have to take a certain number
of math classes to fulfill requirements”) to classroom-specific (e.g., “watching a
teacher work on an algebraic equation on the blackboard”). Due to its objectiv-
ity, availability, and reliability, it (and its revisions) became the gold standard for
measuring math anxiety.

Though the authors originally claimed their instrument was unidimensionaﬂ
subsequent studies of the MARS instrument showed that it has multiple dimen-
sions. In one widely used version, a shortened 25-item instrument called the Re-
vised Mathematics Anxiety Rating Scale (RMARS), [Alexander & Martray|identi-
fied three factors: Math Test Anziety, pertaining to evaluative situations in math-
ematics; Numerical Task Anziety, pertaining to basic math computation such as
multiplication and addition; and Math Course Anziety, pertaining to being in a
mathematics course (Alexander & Martray) [1989)). Similar factors were identified
or confirmed in other studies, using different subsets of MARS items or differ-
ent sample population (Baloglu & Zelhart), 2007; Bowd & Brady, 2002; [Plake &
Parker}, |[1982; |[Rounds & Hendel, [1980). Although various authors call similar fac-
tors by different names, we retain these factor labels from the RMARS because
they capture most of the factor structure identified or confirmed in other studies.

While this three-factor structure (or something similar to it) has been con-
firmed repeatedly on the MARS and its variations, several authors have suggested
that these are not the only three factors or subconstructs of math anxiety that are
worth considering. According to Bessant (1995)),

The MARS has proven a reliable measure of some dimensions of mathemat-
ics anxiety, but it does not encompass the entire range of meanings implicit
in this concept. Despite the multidimensional character of the MARS, items
could be appended to the scale that tap additional components or themes.
(p. 328)

Without adding any new items, Bessant (1995) conducted a factor analysis
(N = 173) on a reduced version of the MARS (80 items) and found a six-factor
structure. He labeled his factors General Evaluation Anxiety, Everyday Numerical
Anxiety, Passive Observation Anxiety, Performance Anxiety, Mathematics Test
Anxiety, and Problem-Solving Anxiety (with eigenvalues 28.09, 6.71, 3.09, 2.84,
1.78, and 1.45, respectively. He included three factors that were quantitatively
less significant under the claim that “analysis of peripheral factors within the
MARS provides insight into additional features of [the] complex construct [of math
anxiety]” (p. 336). That is, he claims that math anxiety is more complex than the
three factors so many other authors have identified.

3 For a more thorough history of this instrument, we refer the reader to|Ashcraft & Moore} 2009,

4 This was because they found a high alpha coefficient (.97). They claimed this indicated (1) high inter-
nal reliability and (2) items are heavily dominated by a single homogeneous factor. However,
the latter is not a correct conclusion for a high alpha coefficient (Schmitt} [1996)).
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Phobos Scale Items
- Having to work a math problem that has z’s and y’s instead of 2’s and 3’s.
- Be asked to discuss the proof of a theorem about triangles.
- Listening to a friend explain something they have just learned in calculus.

Fig. 2 Selected original items from the Phobos scale.

Ferguson (1986)) took a different approach and added new items to the MARS
to measure previously unidentified dimensions of math anxiety. His Phobos scale
includes 20 MARS items selected for high loadings onto Test Anxiety and Numer-
ical Anxiety (Richardson & Suinn, 1972) as well as ten original items, including
the three examples listed in Figure|2] His new items (forming the basis of a dimen-
sion he calls “Abstraction Axiety”) aimed to measure reactions to math content
introduced in the middle grades, hypothesizing that this is distinct from anxiety
in reaction to numerical computations associated with the lower grades.

Additionally, there have been some math anxiety scales developed totally in-
dependently of the MARS instrument. The Mathematics Anxiety Scale (MAS),
developed by Betz (1978]), was based on the the Math Anxiety subscale of the
Fennema-Sherman Mathematics Attitudes Scale (Fennema & Sherman)| (1976),
and used with secondary students. And the 12-item Math Anxiety Questionnaire
(MAQ) was developed by Wigfield and Meece (1988)) for use with elementary
school students. Kazelskis| (1998]) showed using a factor analysis that these two
scales are different than the RMARS, indicating additional dimensions of math
anxiety that the RMARS fails to measure.

Table [I] summarizes a sample of studies that find similar factor structures as
the RMARS along with the studies mentioned above that add to the three factors
of the RMARS.

These instruments and factor analyses show some of the possibilities of di-
mensions of math anxiety not contained or commonly identified in the original
MARS/RMARS. This suggests that math anxiety generally can come from a
number of distinct sources, and that a choosing items to test for math anxiety
inherently makes a choice of what sources to consider.

In the following section, we use a deep analysis of the definition of math anxiety
to argue for additional scenarios that should be included in an inventory claiming
to measure it. Some of what we propose faintly echos items and dimensions from
Ferguson and Bessant, but the basis of our claims for inclusion is different.

2.2 Revisiting the definition of “Math Anxiety” through a contemporary lens

As mentioned in the introduction to this Literature Review, [Richardson & Suinn
define math anxiety in their 1972 paper as

a feeling of tension and anxiety that interferes with the manipulation of
numbers and the solving of mathematical problems in a wide variety of ordi-
nary life and academic situations. (p. 551, emphasis added)

Two reasons to retain this definition are that (1) it is the most commonly cited
definition in the literature and (2) it is the definition that the “gold standard”
MARS instrument and its descendants are based on. While most scales mention
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this definition only in passing, we believe that it warrants further discussion. In
particular, the two phrases “solving of mathematical problems” and “a wide va-
riety... of academic situations” emphasized above should be seen in light of their
own bodies of scholarship. Understanding the meaning of these phrases in turn
affects the meaning of “math anxiety” and how we should measure it.

2.2.1 A contemporary lens on Mathematical Problem Solving

Schoenfeld| (1992)) points out that the terms “mathematical problems” and “prob-
lem solving” have different meanings to different audiences and they have varied
substantially in popular educational use over time. On a spectrum of meanings,
Schoenfeld describes two conflicting interpretations of (mathematical) “problem”:
problems as routine exercises and problems that are problematic (pp. 337-338).
“Routine exercises” are problems for which students know a method or routine to
use and for which the goal of the problem is getting an answer. Numerical compu-
tations are almost always routine exercises. But more complex problems may be,
too, if practiced in the context of “learn this technique, apply this technique,” to
many similar problems.

In contrast, “problems that are problematic” (now commonly also called non-
routine problems) are not about applying a known method, but rather, inventing
or discovering a method to solve the problem. In this conception of “problem”
and “problem-solving”, the process of finding a solution is the goal as much, if
not more so, than finding the solution itself. This conception of problem-solving is
what mathematicians practice daily on a more global scale—attempting to solve
problems that have never been solved by anyone and do not have a pre-ordained
method of solution.

It is no surprise, given our training as mathematicians, that this second con-
ception is what we (the authors) think of as “problem-solving”. We also frequently
ask our students to engage in this kind of problem-solving in the courses we teach,
using their knowledge base to work on new and novel problems. For these prob-
lems, as opposed to what we usually call “exercises”, the method of approach is
not given and generally not known from the beginning.

In addition to requisite prior knowledge (of definitions, procedures, and more
overarching general strategies), solving such problems usually requires monitoring
of the solving process and deciding whether to continue or discontinue a particular
approach (see [Schoenfeld, [1989)), and a disposition toward learning and toward
mathematics that allows one to make several failed attempts and continue to
persevere. These necessary knowledge and behaviors are described in depth in
Schoenfeld]s [1985| book on Mathematical Problem Solving, where he sorts them into
four categories: Resources (facts, procedures, etc.), Heuristics (strategies), Control
(monitoring and decision-making), and Belief Systems.

Schoenfeld’s work on problem-solving was mostly carried out at the college
level, like the classes we teach. Another body of literature, on mathematics tasks
and their cognitive demand in the K-12 setting (e.g., |[Doylel [1988; [Stein & Lane|
1996)), presents a similar characterizations of mathematical problem solving. Specif-
ically, the Stein & Lane|definition of tasks with High / Doing Mathematics cognitive
demand is summarized as:

The use of complex, non-algorithmic thinking to solve a task in which
there is not a predictable, well-rehearsed approach or pathway explicitly
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suggested by the task, task instructions, or a worked out example. “Doing
mathematics” processes are often likened to the processes in which math-
ematicians engage when solving problems. (Stein & Lane| [1996] p. 58)

This description of tasks defined as “doing mathematics” aligns closely with our
personal conceptions of “solving of mathematical problems,” but—like “problem-
atic problems” described above—is completely misaligned with the kinds of math-
ematical problems that show up in the MARS instrument and its descendants to
measure math anxiety (see Figure|l|and Appendix. We also note that although
Bessant (1995)) explicitly calls one of his peripheral dimensions “Problem-Solving
Anxiety”, the scenarios they represent—e.g., “Solving a problem such as: If z = 12,
and y = 4, what is the ratio of = to y?” or “Adding up 1/5+ 2/3 on paper.”—also
do not fit the definition of problem solving in the sense of problematic problems.
One of the scenarios in Bessant’s problem-solving dimension, “Doing a word prob-
lem in algebra,” could be a problematic problem, depending on the context. But
as worded, it is unclear if this item falls into this conception of problem solving or
not.

It is notable that the original definition of math anxiety given by |Richardson
& Suinn| was published in 1972, on the verge of the so-called “back-to-basics”
movement in math education focused on rote routines. In this era, what the au-
thors meant by “the solving of mathematical problems” may very well have been
numerical manipulations or very simple word problems with specific strategies or
routines attached to them. As our collective notion of “problem” evolves, however,
so should our measurement of anxieties that stem from engaging in solving them.

2.2.2 A contemporary lens on the Mathematics Classroom

A second phrase from the definition of math anxiety that warrants discussion is “a
wide variety of... academic situations”. A read through the items in the RMARS
(see Appendix , the most commonly used MARS descendant, presents a very
limited view of such situations. The instrument includes scenarios such as listening
to a lecture, reading a textbook, and registering for courses. But the instrument
fails to represent many situations that we daily ask our students to engage in and
that are generally thought today to be productive classroom practices for learning
mathematics, such as talking about mathematics with peers or the instructor.

In this section, we present a theoretical perspective on what the MARS items
are lacking with regards to “academic situations” by looking briefly at a contempo-
rary view of instruction as interactions between instructor, students, and content
(Cohen, Raudenbush, & Ball, [2003]). Then we turn to a practical perspective on
what the MARS items are lacking by analyzing four contemporary documents
describing best practices in college mathematics teaching.

Though many important academic situations take place outside the classroom—
e.g., doing homework, studying, or using resources such as the textbook, tutoring
center, or online videos—at its most basic, “academic situations” should include
the many faces of instruction, that is, what happens in the classroom. In their in-
fluential perspective on instruction Cohen, Raudenbush and Ball (2003) describe:
“Teaching is what teachers do, say, and think with learners, concerning content,
in particular organizations and other environments, in time (p. 124)” This is com-
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teachers

students
‘><‘ <4—» content

students

Fig. 3 “Instruction as interaction,” adapted from |Cohen et al., 2003}

monly referred to as the “instructional triangle” and is depicted visually in Fig-
ure [3

The academic situations presented in the RMARS fail to represent two key in-
teractions in this model: (1) instructor interacting with students and (2) students
interacting with students. We claim that it fails to capture instructor-student inter-
action because none of the situations it represents are reciprocal or symmetrical—
they are all unidirectionalﬁ

As practical evidence for what are are generally thought today to be productive
classroom practices for learning mathematics, we turn to several influential policy
documents, position statements, and recommendation guides from the last decade
that attend to math teaching. We take these, collectively, not as evidence of actual
teaching practice, but as collective agreement to what college math teaching should
look like. The teaching practices in these documents should, therefore, be included
under the heading of “academic situations” when describing college mathematics
teaching, if that is what the construct of math anxiety is supposed to measure.

The influential documents we highlight are the following:

2012l Engage to Excel: Producing One Million Additional College Graduates
with Degrees in Science, Technology, Engineering, and Mathematics,
President’s Council of Advisors on Science and Technology (PCAST).

20151 A Common Vision for Undergraduate Mathematical Sciences Programs
in 2025, Mathematical Association of America (MAA).

2016l “Active Learning in Post-Secondary Mathematics Education”, Col-
lege Board of Mathematical Sciences (CBMS)

2018 Instructional Practices Guide, Mathematical Association of America

(MAA)

6 Looking ahead at the instrument we eventually describe in although our original items included
both of these types of interactions (see Appendix , a factor analysis grouped both types of
interactions, so we focused on peer-peer interactions in the final instrument (see Table .
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We present below some of the key findings of each report, as they relate to student
engagement and interactivity, and provide a summary of pedagogical recommen-
dations across the documents at the end.

PCAST Report

With the overall goal of increasing graduates with degrees in the Science, Technol-
ogy, Engineering, and Mathematics (STEM), the PCAST report (2012) presents
overarching strategies and related concrete recommendations, based on a few pri-
mary research findings. One of the first research findings they highlight is the
importance of student engagement to persistence in STEM majors: “Compared
with students in traditional lectures, students who play an active role in the
pursuit of scientific knowledge learn more and develop more confidence in their
abilities, thereby increasing their persistence in STEM majors (p. 6).” Thus, the
first overarching strategy they list to improve STEM education (and retention)
is: “Adopt STEM teaching strategies that emphasize student engagement (p. 8).”
As a concrete recommendation, they propose: “Catalyze widespread adoption of
empirically validated teaching practices (p. 16)” and highlight such evidence-based
teaching practices in Table 2 on p. 17, including: Problem-Based Learning (Capon
& Kuhn| 2004} [Preszler, Dawe, Shuster, & Shuster, |2007) and Problem Sets in
Groups (Cortright, Collins, & DiCarlo), |2005)). Additional studies published too
recently to be cited by the PCAST report further reinforce its message. These in-
clude Laursen’s studies (with her colleagues) of Inquiry-Based Learning in college
mathematics classrooms (2011; |2014) and (Kogan & Laursen, 2014)), and active
learning (in contrast to lecture) more generally in a meta-analysis by Freeman et
al. (2014).

Common Vision

“The Common Vision project brought together leaders from five professional
associations—the American Mathematical Association of T'wo-Year Colleges (AM-
ATYC), the American Mathematical Society (AMS), the American Statistical
Association (ASA), the Mathematical Association of America (MAA), and the
Society for Industrial and Applied Mathematics (STAM)—to collectively recon-
sider undergraduate curricula and ways to improve education in the mathematical
sciences (p. 1)” In particular, this document synthesizes recommendations and
findings from seven curricular guides put out by these five organizations (see pp.
11-12 in Saxe & Braddy|). We highlight here the pedagogical recommendations
they make in the second of their five over-arching themes in their executive sum-
mary:

Across the guides we see a general call to move away from the use of tra-
ditional lecture as the sole instructional delivery method in undergraduate
mathematics courses...Even within the traditional lecture setting, we should
seek to more actively engage students than we have in the past. All seven
guides stressed the importance of moving toward environments that incor-
porate multiple pedagogical approaches throughout a program. Oft-cited
examples are active learning models where students engage in activities such
as reading, writing, discussion, or problem solving that promote analysis, syn-
thesis, and evaluation of class content. Cooperative learning, problem-based
learning, and the use of case studies and simulations are also approaches
that actively engage students in the learning process. (Saxe & Braddy,
2015, p. 19; emphasis added)
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CBMS Statement

In 2016, the College Board of the Mathematical Sciences put out a short posi-
tion statement in support of Active Learning. In the short statement, the entire
following sentence is bolded and italicized:

We call on institutions of higher education, mathematics departments and
the mathematics faculty, public policy-makers, and funding agencies to in-
vest time and resources to ensure that effective active learning is incorpo-
rated into post-secondary mathematics classrooms. (Conference Board of]
the Mathematical Sciences) 2016, p. 1; emphasis added)

MAA Instructional Practices Guide

The Instructional Practices Guide represents a professional organization’s recom-
mendations on teaching and is, to a large extent, based on evidence from the
research literature. This document opens with an extensive chapter on strategies
and practices for fostering student engagement in the classroom. Nine, somewhat
overlapping, strategies are highlighted and described:

CP.1.1. Building a classroom community

CP.1.2. Wait time

CP.1.3. Responding to student contributions in the classroom
CP.1.4. One-minute paper or exit tickets

CP.1.5. Collaborative learning strategies

CP.1.6. Just-in-time teaching (JiTT)

CP.1.7. Developing persistence in problem solving

CP.1.8. Inquiry-based teaching and learning strategies
CP.1.9. Peer instruction and technology

Several meta themes cross-cut many of the described practices. Two cross-
cutting themes we highlight below are notable for how pervasive they are across
the practices highlighted.

1. Eliciting and responding to student-thinking (right or wrong). E.g., “To
encourage student responses and participation, it is important to recognize the
value of students offering both correct and incorrect responses. (p. 15)”. In
some cases, such as Exit Tickets (CP.1.4) and Just-in-time teaching (CP.1.6),
this formative assessment is private. But in many of the practices (CP.1.2,
CP.1.3, CP.1.5, CP.1.8, CP.1.qZI), student thinking is elicited and made public
in the classroom.

2. Student Collaboration. E.g., “Given that students are working on problems
that are designed to be engaging, it often means that these problems are also
more difficult than standard problems and require collaborating with peers...
These collaborations facilitate learning to form logical arguments and as a re-
sult students are able to tackle more difficult problems. (p. 35)” This overlaps
with student thinking being public, but in a particular mode where students are
responding to each other directly, usually in pairs or small groups. This overar-
ching practice shows up explicitly in the descriptions of CP.1.5 and CP.1.8, and
shows up in passing in the descriptions of CP.1.1, CP.1.3, CP.1.7, and CP.1.9.

7 In CP.1.9. students’ answers to questions via device/clicker are anonymous—so private—but the
ensuing peer-to-peer discussion is still public.
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Looking across these four documents, we see that current, research-based rec-
ommendations for college mathematics teachingEl7 as endorsed by the prevailing,
relevant professional societies, include: eliciting and using student thinking, peer-
to-peer collaboration, and students actively working on mathematics content dur-
ing class. None of these central instructional practices or classroom situations are
captured in the MARS/RMARS items, but they are increasingly important to any
representation of mathematical academic situations.

2.2.8 Math Anxiety in an interactive classroom

Not only do the current math anxiety instruments fail to capture academic situ-
ations reflective of current pedagogical recommendations, but not much has been
studied about math anxiety in such classrooms. A search of the ERIC database for
the term “mathematics anxiety” currently yields 1861 result:‘:ﬂ However, adding
the keyword “active learning”—the appropriate term in the ERIC thesaurus for
our setting—narrows these results to fourteen. Of those fourteen, there are no peer-
reviewed journal articles relevant to math anxiety in an interactive, post-secondary,
mathematics classroom. A search of the JSTOR database lead to similar findings:
a full text search of articles in the database for
(("mathematics anxiety") AND ("active learning" OR "Inquiry Based
Learning" OR "Inquiry-Based Learning"))

finds fourteen articles. However, none were relevant to our setting of interest.

While these searches are by no means exhaustive, they are indicative of the
dearth of research in the area of math anxiety pertaining to post-secondary inter-
active mathematics classrooms. In particular, we have found no research on (1)
how an interactive classroom might affect students’ math anxiety, nor (2) what
dimensions of math anxiety are relevant in an interactive classroom.

While these are not the questions this present study aims to answer, our new
items are, by design, poised to better study these kinds of classroom settings than
the RMARS alone.

2.3 Math anxiety and elementary teachers

We developed our survey in the context of our work with pre-service elementary
teachers (PSETs), for whom classroom mathematics is not only the context in
which they are trained but also the context in which they will work. Histori-
cally, elementary school teachers are a much-studied group when it comes to math
anxiety. This is likely both because they exhibit the largest amounts of math anx-
iety among university students grouped by major (Hembree, [1990) and because
they will be in a position to either propagate or alleviate math anxiety by how
they teach mathematics. An alarming finding of [Beilock, Gunderson, Ramirez, &
Levine| (2010)) is that female elementary teachers’ math anxiety negatively affects
the mathematical skills of their female students, by enforcing gendered ideas about
who is good at math.

8 Note that these guides also attend to content recommendations to some extent, but as we delve into
the meaning of “problem solving” in the previous section, §2.2.1] we avoid further expansion
on that subject here.

9 As of September 2018.
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Various studies show that teachers’ math anxiety is related to, but not the
same as, their anxiety about teaching mathematics. Peker defines mathe-
matics teaching anxiety (MTA) as “pre- and in-service teachers feelings of tension
and anxiety that occurs (sic) during teaching mathematical concepts, theories,
and formulas or during problem solving.” Brown et al. found that, while
Math Anxiety (MA) directly correlated with Math Teaching Anxiety (MTA) for
a majority of elementary PSETSs, there are a significant number of PSETs that
either have MA without MTA or MTA without MA (about 36% of students in
their study, combined). Using a different set of instruments to measure MA and
MTA, Peker and Erteken (2011) found a “positive, moderate relationship” be-
tween the two. McAnallen wrote a survey to measure anxiety and self-efficacy in
mathematics and mathematics teaching (McAnallen, |2010)) that yielded two fac-
tors: one related to mathematics teaching, and one related to mathematics outside
a teaching context. In a survey of 691 in-service elementary teachers, she found a
significant (p < 0.001) correlation of 0.63 between the two factors.

Taken together, these studies suggest that a teacher’s math anxieties are often
related to their math teaching anxieties, and that these have real influence on the
educational experiences of their students. Thus, it is important to have a measure
of math anxiety that aligns well with the style of math we ask teachers to engage
with in the classroom.

What kind of mathematics are we asking teachers to engage with in the classroom?
For evidence of this, we turn to the Common Core State Standards for Mathe-

matics (National Governors Association Center for Best Practices and Council of|

[Chief State School Officers| [2010), a contemporary standards document adopted

by forty-one states and four US territories. In addition to specific content stan-
dards, the CCSS are framed by over-arching math practices. These describe what
it means to “do mathematics” in a K-12 classroomH By looking at these math
practices that teachers are expected to engage their students in, we can see a
close connection between this work and the work of teachers doing mathematics
themselves (as described in .

The CCSS Standards for Mathematical Practice consists of eight practices:

MP1
MP2
MP3
MP4
MP5
MP6
MP7
MP8

Make sense of problems and persevere in solving them.

Reason abstractly and quantitatively.

Construct viable arguments and critique the reasoning of others.
Model with mathematics.

Use appropriate tools strategically.

Attend to precision.

Look for and make use of structure.

Look for and express regularity in repeated reasoning.

We want to point out from this list of practices is that MP1 and MP3, in particular,
closely mirror the attributes of “solving mathematical problems” in a “variety

10 While the idea of math practices has gained traction through documents like the Common Core State
Standards (CCSS) (National Governors Association Center for Best Practices and Council of]

|Chief State School Officers} [2010)), we note that math practices are much more general than the

eight listed in this document. The ten process standards in the National Council of Teachers
of Mathematics Principles and Standards (2000) can be seen as kinds of math practices, as
can the competencies in Adding it Up (National Research Council and Mathematics Learning

[Study Committee and others| [2001). And Bass has described math practices as practiced by

mathematicians (2011])).
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of mathematical situations” (described in that we are proposing to more
robustly measure. That is, what we are proposing to more robustly measure with
regards to the definition of math anxiety, has a natural parallel in the task of
teaching, as outlined by the current CCSS for mathematics. While we already
described known connections between MA and MTA above, this suggests that our
new measures are potentially even more closely connected to math teaching.

3 Instrument Development and Data
3.1 Instrument History and Development

As part of an earlier study of students’ performance on oral assessments (White &
Visscherl, [2015), we used the RMARS to measure math anxiety but added seven
supplemental items to better reflect the mathematical situations students would
encounter in our interactive classroom. To craft these items initially, we consid-
ered scenarios that incorporated both math practices enacted by students in our
classrooms (e.g., CCSS MP1: “Make sense of problems and persevere in solving
them” and CCSS MP3: “Construct viable arguments and critique the reasoning
of others”) and pedagogical practices we used as instructors in interactive math-
ematics classrooms (e.g., create opportunities for students to struggle with novel
problems, ask groups of students to discuss results and come to a consensus, ask
students to present their solution to the class). We focused on the kinds of prac-
tices and scenarios that in our experience made some students seem especially
anxious or nervous, but that weren’t represented well in the RMARS. See Table 7]
in Appendix [B] for these seven pilot items.

An exploratory factor analysis of the resulting data (N = 44) grouped the new
items into two factors that we found highly interpretable and subsequently named
Problem Solving Anxiety and Explanation Anxiety (see Table [8|in Appendix .
Our study showed some connection between these two factors and student per-
formance on different styles of assessmen@ and we decided that these anxieties
should have a more systematic measurement (White & Visscher, [2015)).

The items designed to measure Problem Solving Anxiety and Explanation Anx-
iety in the present MEARS instrument were developed in a more systematic man-
ner. We started by defining the constructs we wished to measure and identifying
several sub-constructs that we thought could independently contribute to either
Problem Solving Anxiety or Explanation Anxiety:

Problem Solving Anziety is a feeling of anxiety in response to encountering

— a conceptually difficult or novel math problem (for example, a problem in
unfamiliar terrain, or that one has trouble making progress on), or
— a lengthy problem or set of problems.

11 As a quick summary of the connections found: students with higher Problem Solving Anxiety seemed
disadvantaged on traditional, written assessments compared to individual oral assessments,
but students with higher Explanation Anxiety had the reverse disadvantage.



Measuring Mathematics Engagement Anxiety 15

Explanation Anziety is a feeling of anxiety in anticipation of or response to
explaining one’s mathematical ideas to others.

A person may exhibit this anxiety differently in different types of situations:

— Explanation Anziety with FExternal Doubt is explanation anxiety in the pres-
ence of someone else expressing doubt about the ideas;

— Ezplanation Anxiety with External Validation is explanation anxiety in the
presence of someone else sanctioning the ideas as correct;

— Ezxplanation Anziety with Internal Doubt is explanation anxiety in the pres-
ence of doubting the correctness of the ideas oneself.

These constructs, which grew out of the factor analysis of our experience-
based items in our initial study, correspond to two major facets of “anxiety that
interferes with ... solving mathematical problems... in a wide variety of... academic
situations” that we discuss in as missing from the MARS instruments and its
derivatives.

For each sub-construct, we wrote three items that we thought would each di-
rectly measure anxiety in the described situation. This was intended to minimize
undesired effects due to wording or alternate interpretations of the items. After
running the study, we decided that one item written for “a lengthy problem or
set of problems” was better aligned with “a conceptually difficult or novel math
problem”; the data backed up this assertion. Hence, one sub-construct for Problem
Solving Anxiety has four items while the other has two. We also consulted with
a psychometrician and edited the item statements to improve the likelihood that
they would be consistently interpreted. An additional step that would have im-
proved our items even further would have been several in-person discussions with
students taking the survey to make sure the items were coming across as intended.
We discuss this further in a general section on the limitations of our methods (see

43.4).

3.2 Participants

We recruited participants through a professional network of mathematicians in-
volved in teacher education. Among instructors that responded, some gave the
survey during class time and some emailed the link to their students. After re-
moving incomplete responses and responses from students who did not identify as
future elementary teachers, the survey sample consisted of 132 primarily under-
graduate pre-service elementary teacherslgl Demographic data for this sample is
reported visually in Figure [

12 We had 162 total responses to the survey. Thirteen of those respondents answered “No” to being a pre-
service teacher and sixteen did not answer that question. After removing those 29 responses,
there was one additional response for which the respondent had clearly filled out the survey
without actually reading any of the questions—they entered the same option for every single
question; we removed that response as well, leaving us with 132 responses to analyze.
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Fig. 4 Summary statistics for the sample used in this study (132 undergraduate pre-service
elementary teachers).

3.3 Data and analytical methods

We collected data via an online survey on the Qualtrics platform. The central com-
ponent of the survey was our new instrument we were validating: the Mathematics
Engagement Anxiety Rating Scale (MEARS), consisting of 15 newly developed
items. This was supplemented by the 25 items of the RMARS. In order to test
for general anxiety, participants also completed the State-Trait Anxiety Inventory
(STAI), a standard 20 item survey for general anxiety. Finally, because we hypoth-
esized that our items measuring Problem Solving Anxiety might be related to a
fixed mindset , participants also responded to four mindset questions
taken from the work of Carol Dweck. We discuss this hypothesized connection and
its relevance in more detail in

We analyzed our data to: (1) produce and verify a factor structure for our
MEARS items, (2) check that these factors are distinct from factors in RMARS
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as well as general anxiety, (3) measure the internal consistency of our factors and
the instrument in general and (4) validate the instrument (i.e., make sure that our
items measure what we say they do). Here, we provide a brief description of the
tests we used. The results of these tests are presented in Section

An exploratory factor analysis (EFA) creates a specified number of factors and
generates item loadings to the factors that best fit the data set. This is independent
of any theoretical model for the instrument. An EFA can be used to determine the
appropriate number of factors as well as test for unexpected patterns in the data.
There are different types of rotation methods used in EFA for fitting the data; the
major difference is between orthogonal and oblique rotation methods. Since the
factors we wish to measure are very likely correlated, we use promax rotation—an
oblique rotation method.

Confirmatory factor analysis (CFA) takes a specified theoretical model and
reports on how the data fits into the model. Fit indices give an indication of
how well the model describes the data; a CFA also reports loadings of items onto
specified factors. The models we test are based on our design of the questions but
also informed by the results of running a few EFAs. In order to determine if the
theoretical model is a good fit for our data, we use the AIC model fit index because
it penalizes the complexity of the model (so that simpler models are preferred).

Cronbach’s alpha is a standard test for internal consistency. A scale or subscale
is internally consistent if its items measure the same (or similar) things. This is
measured by comparing the within-subject variability of a scale or subscale against
the between-subject variability. The range of the alpha score is between negative
infinity and one: negative alpha scores indicate that there is greater within-subject
variability than between-subject variability, while scores above 0.9 are generally
considered to indicate strong internal consistency. Very high alpha scores (above
0.95) can indicate that items are redundant.

Pearson’s correlation coefficient indicates the degree to which two variables
are linearly correlated. The range is between —1 and 1, with 1 indicating perfect
correlation, negative values indicating anti-correlation, and 0 indicating no cor-
relation. This test is useful to show that two variables are correlated—that is, it
tests against a null hypothesis that they are not correlated. We check that various
factors and constructs are correlated, though this result is not surprising. In order
to check that a factor is distinct from other constructs, we run EFAs to see how
items are clumped into factors; if an EFA separates the factors as expected, then
we consider them distinct constructs.

3.4 Limitations

We note several limitations in our item development, data collection, and sample.

The item writing and editing was done collaboratively between the two authors,
incorporating our two different perspectives. A psychmetrician was also consulted
to provide a sounding board for the meaning and interpretability of our items.
There was, however, room for further external validation of our items. Foremost, a
read-through with a survey taker (or more than one) would have more conclusively
ensured that items were being interpreted as intended. (The consultation with the
psychometrician fulfilled this to some degree.) Another step would have been to
consult other mathematics instructors for feedback; this step could still be taken
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and is a process would likely expand greatly on the overall the number of items.
However, we do not propose that the items we’ve written complete the picture
of the dimensionality of math anxiety. We discuss other dimensions one might
measure in our discussion in

Despite the lack of cognitive interviews by survey takers, we claim that our new
items are valid based on the balance of the three perspectives that shaped them,
and the results of the factor analysis reported in §4] that the intended constructs
did, indeed, show up as separate factors. The fact that our list of items is not yet
complete is not an argument against the validity of the additional dimensions of
math anxiety we’ve so far identified.

The authors intended for the question order to be randomized when subjects
took the survey, but, due to a technical glitch with the Qualtrics platform, all
participants had received the questions in the same order. The robustness of the
quantitative results and the qualitative design of the items, however, makes us
confident that the factor analysis would produce similar results with randomiza-
tion. We have evidence of this also in the fact that items from the original RMARS
were pulled into the new factors in a few cases (see Table @, even though they
weren’t listed in a similar place in the survey.

Finally, our sample has at least two limitations: (1) while our sample size
(N = 132) is large enough for validating a survey of this length (15 items), a larger
sample would have allowed for more reliable factor analysis of the 40-item com-
bined instrument (RMARS + MEARS; see §4.2); (2) we intentionally restricted
our sample to pre-service elementary teachers, because we were personally most
interested in their math anxiety levels and what effects that might have on their
future teaching practice. However, this survey and these subscales are likely rele-
vant to more general populations, too, and should be validated with a more diverse
sample.

4 Results

This section is organized into three parts: (1) analyses of MEARS items in isola-
tion, (2) analyses of the RMARS and MEARS items together, and (3) correlations
between the MEARS factors and other instruments. Brief background on the sta-
tistical methods we use can be found in

4.1 Analyses of MEARS items.

As discussed in the MEARS items were written with two factors in mind:
anxiety around solving novel or lengthy problems (Problem-Solving Anxiety), and
anxiety around explaining mathematics to a peer or instructor (Explanation Anx-
iety).

An exploratory factor analysis (EFA) on the 15 MEARS items showed that a
three factor model is the best fit for our datﬂ These three factors reported by the
EFA have very natural interpretations: one factor is made up of all six Problem-
Solving items, while the nine items written for Explanation Anxiety splits into the

13 «Best fit” was determined using the criteria that additional factors do not significantly increase the
cumulative amount of variation explained by the model.
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remaining two factors—those involving external validation or doubt (6 items), and
those involving internal doubt (3 items). We further discuss these factors in
Specific item loadings for the three-factor EFA are reported in Table [2}

Table 2 Factors and item loadings for an EFA of the 15 MEARS items.

I. Problem Solving Anxiety (PS-Anx)
Items pertaining to difficulty of problem.
1. Working on a math homework problem and not making any progress for

5 minutes. 92
2. Being asked to solve a math problem when you are not sure which 84
formulas to use. ’
3. Being given a math problem that does not look like any problem you 80
have seen before. '
4. Working on a math problem for which you are not sure where to start. .79
Items pertaining to length of problem set.
5. Being assigned an extra long math homework set. .89
6. Beginning to work on a multi-page math worksheet. .89
II. Explanation Anxiety (E-Anx)
Items involving external doubt
7. Being asked to further justify why your mathematical solution is correct 98
to a classmate who is not yet convinced. '
8. Having to convince a classmate that your different way of solving a math 90
problem is equally valid. ’
9. Continuing to explain your mathematical solution, even though a
. .75
classmate doubts it is correct.
Ttems involving external validation
10. Being asked by a classmate to go through your correct solution more 33
slowly. '
11. Describing to a small group of classmates how you went about a
- . .69
homework problem on which you received a perfect score.
12. After reaching an “aha!” moment on a problem on your math worksheet, 64
being asked to explain your solution to a small group of classmates. '
ITI. Explanation with Internal Doubt Anxiety (EID-Anx)
Items concerning mathematical explanation with internal doubt
13. Sharing your solution with a small group of classmates when you are 107
not sure it is correct. ’
14. Explaining your attempt at a math problem to a classmate, even though 83
you are not very convinced that it is right. ’
15. When you are partway through figuring out a math problem, being 58

asked to share your thinking with a classmate.

Eigenvalues are 4.45 for Factor I, 3.99 for Factor II, and 2.27 for Factor III.

We subsequently ran a confirmatory factor analysis (CFA) for the following models
of the MEARS items:

— One single factor (15 items);
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— Two factors (as survey designed): PS-Anx (6 items) and original Explanation
Anxiety (9 items);

— Three factors (from EFA): PS-Anx (6 items), E-Anx (6 items), and EID-Anx
(3 items).

There are many indices that report on how well a model fits the data; the AIC is a
model fit index that penalizes complexity of the model. Among these three models,
the lowest AIC is for the three-factor model. We note that running a CFA for a
five-factor model (using the five most precise subscales as the survey was written,
cf. lowers the AIC further. We do not pursue this model because these five
factors are part of the sub-factor structure as we designed the instrument and it
becomes a bit unwieldy to consider five factors independently.

The EFA and CFA results indicate that the items are optimally sorted into
three factors: Problem Solving Anxiety (PS-Anx), Explanation Anxiety (E-Anx),
and Explanation with Internal Doubt Anxiety (EID-Anx). The EFAs indicate
that the cumulative variation explained by n factors plateaus at n = 3, and the
AIC model fit index for CFAs with different models shows that this model best
explains the data among the readily interpretable and useful theoretical models of
the instrument.

Finally, as a standard test of internal consistency, we computed the Cronbach’s
alpha scores for the three factors found in the above exploratory and confirmatory
factor analyses. This yields @ = 0.94 for Problem Solving Anxiety, a = 0.92 for
Explanation Anxiety, and o = 0.91 for Explanation with Internal Doubt Anxiety.
These scores indicate that there is much more variation between subjects than
item-to-item within these subscales and that the constructs are internally consis-
tent. As a whole, the survey has a = 0.94, and so can be considered internally
consistent. We note that scores larger than 0.95 are often considered an indication
that questions are redundant and almost always produce the same response from
subjects; our data analysis shows that this is not the case in our instrument.

Strength of MEARS Factors. In order to compare the amount of anxiety different
factors cause in our study population, we compute the average score for the items
that comprise each factor; this is called the factor score. Averages and standard
deviations of the factor scores from our data for each of the three MEARS factors
are reported in Table For comparison, the meta-analysis (Hembree, [1990) reports
a mean score of 2.24 (on the same scale) for Elementary education majors on the
98-item MARS. Our study population had a mean factor score of 3.05 for Test
Anxiety, 1.56 for Numerical Anxiety, and 1.86 for Course Anxiety. The mean score
for the entire 25-item RMARS instrument was 2.52.

Table 3 Averages of per-item scores for the three MEARS factors. The range is from 1 to 5,
with higher numbers indicating more anxiety.

mean sd  median
Problem Solving Anxiety 3.17  0.99 3.08
Explanation Anxiety 1.98 0.89 1.83

Expl with Internal Doubt 254 1.10 2.33
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4.2 Analysis of RMARS+MEARS

We analyzed the total 40-item inventory (RMARS + MEARS) in order to de-
termine if our new items were measuring something distinct from the RMARS
constructs of Math Test Anxiety, Numerical Anxiety, and Math Course Anxiety.

Although we do not have enough statistical power to conclude much from
a factor analysis on all 40 items together, the findings nonetheless have evident
descriptive value. An EFA for the 40 items of RMARS+MEARS with five factors
redistributes some of the RMARS items among the new factors in particularly
interpretable ways. In particular, the first factorizl in this EFA is Problem Solving
Anxiety, and it pulls in three items from RMARS that make sense given our
definition of PS-Anx (see §3.1)):

6. Being given homework assignments of many difficult problems that are due the
next class meeting.
11. Picking up a math textbook to begin a difficult reading assignment.
13. Opening a math or stat book and seeing a page full of problems.

Note that |Alexander & Martray| (1989) report these three items as belonging to
the Math Test Anxiety factor, but that they don’t conceptually align well with
that factor. So it’s especially unsurprising that they would load with one of our
factors instead. For the reports that follow, we group these three items into our
Problem Solving Anxiety factor and remove them from the Math Test Anxiety
factor.

The second factor is Math Test Anxiety (with fewer items), followed by Nu-
merical Anxiety, Explanation Anxiety (6 items, see Table , and Explanation
with Internal Doubt Anxiety (3 items, see Table . The Math Course Anxiety
factor from RMARS does not appear in this analysis; items from the Alexander
and Martray Math Course Anxiety factor do not load significantly onto any of the
factors. The redistributed items are reported in Appendix [C]

Table 4 Factors and the variation they explain of a 5-factor
EFA on all 40 items (RMARS + MEARS).

Factor Variation explained
Problem Solving Anxiety' 19%
Math Test Anxiety! 18%
Numerical Anxiety 14%
Explanation Anxiety 11%
Expl with Internal Doubt 5%

T Problem Solving Anxiety in this table refers to the 9-

item factor that includes the three additional RMARS

items pulled in, rather than the designed 6-item con-

struct. Math Test Anxiety in this table similarly has

fewer items than the RMARS factor of the same name.
To further investigate the distinctness of our factors from the RMARS factors,
we computed correlations between the three factors of the MEARS found above
in §4.1]and the original three factors from the RMARS. Unsurprisingly, al the fac-

tors are positively correlated. The highest correlation is between Problem-Solving

14 Factors are reported in order of how much of the variation in scores they explain; see Table
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Anxiety in the MEARS and the Test Anxiety in the RMARS, at 0.73. However, if
we remove the items from Test Anxiety that loaded with Problem-Solving Anxiety
in the 40-item EFA, then this correlation goes down to 0.666. All the correlations
are reported in Table

Table 5 Correlations between MEARS factors (as reported in %j and original RMARS
factors.

Prob Solv  Explanation  Expl-doubt Test  Numerical Course
Prob Solv 1.000

Explanation 0.571 1.000

Expl-doubt 0.593 0.645 1.000

Test 70.730 0.534 0.551  1.000

Numerical 0.411 0.553 0.482 0.474 1.000

Course 0.577 0.590 0.543 0.616 0.672 1.000

T If we take out the three items from the Math Test Anxiety that loaded with Problem
Solving Anxiety (see Table E[), the correlation of probsolv and test is 0.666.

Putting all this together, the fact that our MEARS items showed up in distinct
factors from the RAMRS items (with the exception of a few items that conceptu-
ally made sense) in the EFA, and the fact that the correlations between the factors
are only moderate (between 0.3 and 0.7) support the claim that our new items are
distinct from existing dimensions and constructs in the RMARS.

4.3 Relationships between MEARS factors and other instruments.

To ensure that our new instrument was not simply measuring general anxiety, we
ran an EFA (with promax rotation) on the 15 MEARS items with the 20 STAI
items. An analysis with two factors yields a first factor with eigenvalue 8.28 con-
sisting of exactly the 15 MEARS items, and a second factor with eigenvalue 7.67
consisting of exactly the 20 STAI items. These two factors cumulatively explain
46% of the variation in responses. An analysis with four factors retains the factor
composed of the 20 STAI items (eigenvalue 7.31) and breaks up the 15 MEARS
items into the three factors that we found previously: Problem Solving Anxiety
(eigenvalue 4.44), Explanation Anxiety (eigenvalue 4.05), and Explanation with
Internal Doubt Anxiety (eigenvalue 2.49). These four factors cumulatively explain
52% of the variation in responses. Other numbers of factors display similar results,
keeping simple items from MEARS separate from simple items from STAI, and cre-
ating more complex items as the number of factors goes up. Taken together, these
analyses suggest that our new items are not simply measuring general anxiety.
While the analyses described above suggest that the MEARS items measure
something distinct from general anxiety, they are, unsurprisingly, positively corre-
lated with STAI scores. To test this, we created a Problem Solving Anxiety factor
score by taking the average of the six items associated with that factor; similarly
for Explanation Anxiety and Explanation with Internal Doubt Anxiety. The cor-
relations with STAI score (averaged with appropriate items inverted) are 0.288
(PS-Anx), 0.348 (E-Anx), and 0.386 (EID-Anx). These are statistically significant
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at the p = 0.001 level. We note that these relatively weak correlations agree with
the result found above that these factors are distinct from general anxiety.

We initially hypothesized a relationship between the MEARS factors—specifically
Problem-Solving Anxiety—and Mindset questions (see more discussion of this in
. In particular, we thought there might be a positive, significant correlation
between a student having a fixed mindset and having high Problem-Solving Anx-
iety. We found that all three factors of the MEARS were positively, significantly
correlated with having a fixed mindset. From our data, the correlations with fixed
mindset are 0.315 (PS-Anx), 0.449 (E-Anx), and 0.273 (EID-Anx). All of these
are statistically significant at the p = .01 level.

Running factor analyses (2-factors and 4-factors) on the MEARS items plus
Mindset items yielded factors that completely separated the Mindset items and
MEARS factors. Together, this indicates that the MEARS factors are measuring
something related to, but notably distinct from, having a fixed mindset.

5 Discussion

The results in the previous section show that pre-service elementary teachers have
math anxieties that are distinct from those measured by the RMARS. Two of these
we have labeled Problem Solving Anxiety and Explanation Anxiety. In this section,
we discuss (1) possible causes, effects, and ways to address these anxieties, (2) their
applicability to different populations, including PSETSs, and (3) the potential for
measuring other math anxieties in a similar vein.

5.1 Digging Deeper into Problem Solving and Explanation Anxieties

Problem Solving Anxiety has a particularly large effect, not only in the amount
of anxiety it produces on average (see Table [3) but also how it explains more of
the variation of scores than any of the standard factors in RMARS (see Table [4)).

When we reflect on what is known about students’ epistemological beliefs about
mathematics, it’s not surprising that being faced with problems for which the
method of approach is unknown would cause anxiety. In particular, in an analysis
of 33 articles from 1980 to 2004, Muis (2004)) found several common non-availing
beliefs in students (across grade levels) which included: students believe they are
unable to construct new mathematical knowledge and solve problems on their own,
that mathematics is about applying known procedures from the teacher or from
the book, and that when a math problem cannot be solved within 5-10 minutes
something is either wrong with the problem or with the student. When a student
holding these beliefs is confronted with a problem that cannot be solved quickly
with a known procedure, there is a conflict between the task and the students’
beliefs. We believe this is an underlying mechanism to the Problem Solving Anxiety
we have identified.

However, this explanation is not perfect. Recall that our items were initially
designed to measure two separate kinds of anxiety associated with solving prob-
lems: one for particularly novel problems (Q1-Q4, Table[2)—that conflict with the
non-availing beliefs about mathematics that many students hold—and one for a
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lengthy list of problems (Q5-Q6, Table. However, these did not show up as sep-
arate factors in our analysis. Since we didn’t have enough statistical power to look
for a large number of factors, this could be the reason we didn’t see any distinction
here. Or, it could be that a lengthy list of routine problems still brings on a sense
of panic similar to a problem for which the method of approach is unknown.

Another reason that our problem-solving scenarios (especially Q1-Q4, Table
might cause pronounced anxiety is that students might see their not knowing how
to proceed as a measurement of their intelligence. This would especially be the case
for students with a fixed mindset (Dweckl [2007)). In that case, being stuck or unable
to do a problem might seem to mean more than simply being stuck, it might feel
like an indicator of their overall intelligence, which would, understandably, cause
anxiety. This line of reasoning—that students with a fixed mindset might have
increased anxiety in the face of a problem they don’t know how to approach—led
us to include a short mindset inventory in our initial data collection. As described
in we did find that fixed mindset and PS-Anx were correlated, but also that
they were distinct constructs.

The factor analysis of the items relating to Explanation Anxiety held some
surprises for us. Namely, we were surprised that the six items Q7—Q12 (see Table
showed up as a single factor, even though three of the items described scenarios
with external doubt and three described scenarios with external validation. What
did fall out as a separate factor were scenarios describing the presence of internal
doubt. That is, it seems that doubting your own solution you are explaining is
notably distinct from having someone else doubt a solution you are explaining.
We had predicted that doubt from an external source would carry more weight—
and be more similar to internal doubt—than what the factor analysis showed.
In retrospect, knowing that your own solution is wrong, but having to explain it
anyways, does seem notably different than having someone else question something
you can at least reasonably stand behind.

5.2 Survey utility: pre-service elementary teachers and general population

The MEARS items were developed for use and tested on pre-service elementary
teachers, but we also see use for this survey in broader populations. In this sec-
tion, we explore the special relevance of problem-solving anxiety and explanation
anxiety to PSETs and we describe other potential uses for the instrument.

A question of persistent interest in teacher education research is: “what influ-
ences teachers’ instructional decisions?” A teacher who experienced anxiety as a
student in an interactive classroom might hesitate using interactive techniques in
their own classroom, either to avoid encountering those situations that make they
themselves anxious or to shield their students from potentially anxiety-inducing
activities. A hypothetical example: a teacher with Problem-Solving Anxiety may
focus only on procedures in her curriculum and avoid all of the open-ended prob-
lems in the textbook, either because she is anxious about encountering unexpected
or unfamiliar student work, or because she remembers her own experience with
such problems as as student and doesn’t want her students to have the same neg-
ative experiences. Similarly, if a teacher has Explanation Anxiety, she may teach
math in a more authoritarian and “here are the correct procedures” kind of way
to spare her students having to explain their thinking.
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For the reasons described above, we think any study measuring math anxiety
in pre-service or in-service teachers to better understand their teaching decisions,
classroom climate, or other instructional factors should consider the utility of
augmenting the MARS with our new MEARS items and the dimensions they
represent.

Looking beyond the specific population of pre-service teachers, the math anx-
iety factors in MEARS are more broadly relevant to anyone who encounters a
need to engage in mathematical problem solving or explain their mathematical
ideas. These activities are hallmarks of many active learning classrooms. Better
understanding student experiences in these classrooms—for example their anxi-
eties around certain classroom practices, as measured by our instrument—could
give both practitioners and researchers insight to better fine-tune the affective
dimension of teaching with these kinds of active and interactive approaches.

Individual instructors may find information from this instrument useful in their
particular classrooms. To optimize learning for their students, individual instruc-
tors should be aware of how their students feel, not just what they know. For ex-
ample, it’s easy to imagine that a student whose previous mathematics classroom
expectations included reproducing a litany of procedures, sitting quietly while
a teacher lectures, or working individually on all assignments, might feel over-
whelmed or anxious entering a mathematics classroom where expectations include
explaining their mathematical thinking, working on novel problems, and question-
ing the mathematical thinking of their peers. While understanding the affective
dimension of teaching relies on empathy and interpersonal skills, an instrument
like the MEARS could give individual practitioners, programs, or departments
another tool for understanding the supports students need to engage with these
interactive classroom practices successfully.

Researchers studying larger scale samples of secondary or college active-learning
math classrooms might also be interested in systematically measuring our ex-
panded dimensions of math anxiety. One might ask how a students’ problem-
solving or explanation anxiety, for example, affects their ability to participate in
such a classroom. This may shed light on more equitable or less equitable ways of
enacting or supporting active learning techniques in the math classroom.

5.3 Even more dimensions of math anxiety

We developed the MEARS to measure students’ anxiety around solving (chal-
lenging) mathematical problems in a classroom that includes significant peer-peer
interactions. For this purpose, we focused on two math practices that—problem-
solving and explaining one’s thinking— that (1) are relevant to the definition of
math anxiety (see §2.2)), (2) are cornerstones of our problem-based, active-learning
classrooms, and (3) seem to cause anxiety among students in our past experience.
However, there are many other mathematical practices one might consider mea-
suring anxiety around. For such measurements, further additional survey items
would be needed.

Often-referenced lists of mathematical practices also have been published for
the K-12 setting by the National Council of Teachers of Mathematics (2000),
the National Research Council (2001)), and in the Common Core State Standards
(2010). Our items are most relevant to (1) the CCSS Practice Standard 1: “Make
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sense of problems and perservere in solving them” or the NCTM standard “Prob-
lem solving”, and (2) the CCSS MP3: “Construct viable arguments and critique
the reasoning of others” or the NCTM standard “Communication”. In addition to
these, we imagine that standards such as the CCSS MP2: “Reason abstractly and
quantitatively” or the NCTM standard “Reasoning and Proof” may cause anxiety
among students.

There are also math practices that are not necessarily represented in the K-
12 publications listed above. Hyman Bass provides a list from the perspective
of a mathematician with a view toward mathematics instruction of eleven math
practices: questioning, exploring, representing, structure seeking, consulting, con-
necting, proof seeking, being opportunistic, proving, analyzing/evaluating proofs,
and exercising judgment and taste (Bass| [2011). We can imagine, for instance, a
situation in which students are asked to exercise judgment and taste while do-
ing mathematics producing anxiety among some students who believe that the
discipline of mathematics has one correct way of solving problems.

6 Conclusion

A contemporary conception of “solving mathematical problems” and “academic
situations” necessitates that we reevaluate the way we measure “math anxiety”.
Our overall claim in this study is that there is more to math than crunching num-
bers and taking high stakes tests, and that to understand and address anxieties
around mathematics, these other attributes of doing mathematics must be con-
sidered. When we wrote additional Likert-scale items to supplement the RMARS
and capture aspects of doing mathematics that were noticeably missing, we found
that, indeed, our new items were measuring something distinct from existing
factors. This is important because it means that the current most widely-used
instrument—RMARS—is missing real, distinct components of math anxiety. If
we are more comprehensive in what we measure, we can be better equipped to
understand and address anxieties around doing mathematics.

The connection to teaching mathematics is potentially especially potent. While
its already been shown that math anxiety in female teachers (using the RMARS
alone) has startling negatives consequences for their female students achievement
(Beilock et al.l 2010)), we think there are even deeper connections to explore here
between a teachers anxieties and teaching decisions they make. We hope this new
supplemental instrument will help support such exploration.

References

Alexander, L., & Martray, C. R. (1989). The development of an abbreviated
version of the mathematics anxiety rating scale. Measurement and Evaluation
in Counseling and Development, 22(3), 143-150.

Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive con-
sequences. Current directions in psychological science, 11(5), 181-185.

Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory,
math anxiety, and performance. Journal of Experimental Psychology: General,
130, 224-237.



Measuring Mathematics Engagement Anxiety 27

Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance,
and math anxiety. Psychonomic bulletin & review, 14(2), 243-248.

Ashcraft, M. H., & Moore, A. M. (2009). Mathematics anxiety and the affective
drop in performance. Journal of Psychoeducational Assessment, 27(3), 197
205.

Baloglu, M., & Zelhart, P. F. (2007). Psychometric properties of the revised
mathematics anxiety rating scale. The Psychological Record, 57, 593—611.

Bass, H. (2011). Vignette of doing mathematics: A meta-cognitive tour of the
production of some elementary mathematics. The Mathematics Enthusiast,
8(1), 3-34.

Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female
teachers math anxiety affects girls math achievement. Proceedings of the
National Academy of Sciences, 107(5), 1860-1863.

Bessant, K. C. (1995). Factors associated with types of mathematics anxiety in
college students. Journal for Research in Mathematics Education, 26, 327—345.

Betz, N. E. (1978). Prevalence, distribution, and correlates of math anxiety in
college students. Journal of Counseling Psychology, 25, 441-448.

Bowd, A. D., & Brady, P. H. (2002). Factorial structure of the revised mathemat-
ical anxiety rating scale for undergraduate education majors. Psychological
Reports, 91, 199-200.

Brown, A., Wetenskow, A., & Moyer-Packenham, P. (2011). Elementary pre-
service teachers: can they experience mathematics teaching anxiety without
having mathematics anxiety? Issues in the Undergraduate Mathematics Prepa-
ration of School Teachers: The Journal, 5, 1-14.

Capon, N., & Kuhn, D. (2004). What’s so good about problem-based learning?
Cognition and Instruction, 22(1), 61-79.

Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction,
and research. Educational evaluation and policy analysis, 25(2), 119-142.
Conference Board of the Mathematical Sciences. (2016). Active learning in post-

secondary mathematics education. Washington, DC.

Cortright, R. N., Collins, H. L., & DiCarlo, S. E. (2005). Peer instruction enhanced
meaningful learning: ability to solve novel problems. Advances in physiology
education, 29(2), 107-111.

Doyle, W. (1988). Work in mathematics classes: The context of students’ thinking
during instruction. Educational psychologist, 23(2), 167-180.

Dweck, C. S. (2007). Mindset: The new psychology of success. Ballantine Books.

Fennema, E., & Sherman, J. A. (1976). Fennema-sherman mathematics atti-
tudes scales: Instruments designed to measure attitudes toward the learning
of mathematics by females and males. Journal for research in Mathematics
FEducation, 7(5), 324-326.

Ferguson, R. D. (1986). Abstraction anxiety: A factor of mathematics anxiety.
Journal for research in mathematics education, 17(2), 145-150.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H.,
& Wenderoth, M. P. (2014). Active learning increases student performance
in science, engineering, and mathematics. Proceedings of the National Academy
of Sciences, 111(23), 8410-8415.

Group, P. S. U. W. (2012). Engage to excel: Producing one million additional
college graduates with degrees in science, technology, engineering, and math-
ematics. report to the president. FEzecutive Office of the President.



28 Daniel Visscher, Nina White

Hembree, R. (1990). The nature, effects and relief of mathematics anxiety. Journal
for Research in Mathematics Education, 21, 33—46.

Hopko, D. R., Ashcraft, M. H., Gute, J., Ruggiero, K. J., & Lewis, C. (1998).
Mathematics anxiety and working memory: Support for the existence of a
deficient inhibition mechanism. Journal of anziety disorders, 12(4), 343-355.

Kazelskis, R. (1998). Some dimensions of mathematics anxiety: A factor analysis
across instruments. FEducational and Psychological Measurement, 58(4), 623—
633.

Kogan, M., & Laursen, S. L. (2014). Assessing long-term effects of inquiry-based
learning: A case study from college mathematics. Innovative higher education,
39(3), 183-199.

Laursen, S., Hassi, M.-L., Kogan, M., Hunter, A.-B., & Weston, T. (2011). Evalu-
ation of the ibl mathematics project: Student and instructor outcomes of inquiry-
based learning in college mathematics. Colorado University, Boulder.

Laursen, S., Hassi, M.-L., Kogan, M., & Weston, T. (2014). Benefits for women and
men of inquiry-based learning in college mathematics: A multi-institution
study. Journal for Research in Mathematics Education, 45(4), 406-418.

Mathematical Association of America. (2018). Maa instructional practices guide.
Washington, DC: Mathematical Association of America.

McAnallen, R. (2010). Ezamining mathematics anziety in elementary classroom
teachers (Unpublished doctoral dissertation). University of Connecticut.

Muis, K. R. (2004). Personal epistemology and mathematics: A critical review
and synthesis of research. Review of educational research, 74(3), 317-377.

National Council of Teachers of Mathematics. (2000). Principles and standards for
school mathematics. Reston, VA: Author.

National Governors Association Center for Best Practices and Council of Chief
State School Officers. (2010). Common core state standards in mathematics.
Washington D.C.: Authors.

National Research Council and Mathematics Learning Study Committee and oth-
ers. (2001). Adding it up: Helping children learn mathematics. National
Academies Press.

Novak, E., & Tassell, J. L. (2017). Studying preservice teacher math anxiety and
mathematics performance in geometry, word, and non-word problem solving.
Learning and Individual Differences, 54, 20—29.

Peker, M. (2009). Pre-service teachers teaching anxiety about mathematics and
their learning styles. FEurasia Journal of Mathematics, Science €& Technology
Education, 5(4), 335-345.

Plake, B., & Parker, C. (1982). The development and validation of a revised
version of the mathematics anxiety rating scale. Educational and Psychological
Measurement, 42, 551-557.

Preszler, R. W., Dawe, A., Shuster, C. B., & Shuster, M. (2007). Assessment
of the effects of student response systems on student learning and attitudes
over a broad range of biology courses. CBE-Life Sciences Education, 6(1),
29-41.

Resnick, H., Viehe, J., & Segal, S. (1982). Is math anxiety a local phenomenon?
a study of prevalence and dimensionality. Journal of Counseling Psychology,
29(1), 39.

Richardson, F., & Suinn, R. (1972). The mathematics anxiety rating scale: Psy-
chonometric data. Journal of Counseling Psychology, 19, 551-554.



Measuring Mathematics Engagement Anxiety 29

Rounds, J. B., & Hendel, D. D. (1980). Measurement and dimensionality of
mathematics anxiety. Journal of Counseling Psychology, 27(2), 138.

Saxe, K., & Braddy, L. (2015). A common vision for undergraduate mathematical
sciences programs in 2025. Washington, DC: Mathematical Association of
America.

Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological assessment,
8(4), 350.

Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, Florida: Academic
Press, Inc.

Schoenfeld, A. H. (1989). Teaching mathematical thinking and problem solving.
Toward the thinking curriculum: Current cognitive research, 83—-103.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving,
metacognition, and sense making in mathematics. In D. Grouws (Ed.),
Handbook of research on mathematics teaching and learning (pp. 334-370). New
York: MacMillan.

Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of
student capacity to think and reason: An analysis of the relationship between
teaching and learning in a reform mathematics project. Educational Research
and Evaluation, 2(1), 50-80.

White, N., & Visscher, D. (2015). Using oral assessments in mathematics con-
tent courses for pre-service elementary teachers: expanding our measurement of
student learning. (University of Michigan, Ann Arbor)

Wigfield, A., & Meece, J. L. (1988). Math anxiety in elementary and secondary
school students. Journal of educational Psychology, 80(2), 210.



30 Daniel Visscher, Nina White

A RMARS items

Math test anxiety
. Studying for a math test.
. Taking math section of the college entrance exam.
. Taking an exam (quiz) in a math course.
. Taking an exam (final) in a math course.
. Picking up math textbook to begin working on a homework assignment.
. Being given homework assignments of many difficult problems that are due the next
class meeting.
7. Thinking about an upcoming math test 1 week before.
8. Thinking about an upcoming math test 1 day before.
9. Thinking about an upcoming math test 1 hour before.
10. Realizing you have to take a certain number of math classes to fulfill requirements.
11. Picking up math textbook to begin a difficult reading assignment.
12. Receiving your final math grade in the mail.
13. Opening a math or stat book and seeing a page full of problems.
14. Getting ready to study for a math test.
15. Being given a pop quiz in a math class.

DU R W N

Numerical anxiety
16. Reading a cash register receipt after your purchase.
17. Being given a set of numerical problems involving addition to solve on paper.
18. Being given a set of subtraction problems to solve.
19. Being given a set of multiplication problems to solve.
20. Being given a set of division problems to solve.

Math course anxiety
21. Buying a math textbook.
22. Watching a teacher work on an algebraic equation on the blackboard.
23. Signing up for a math course.
24. Listening to another student explain a math formula.
25. Walking into a math class.

Table 6 The original 25 RMARS items, with factor labels.

B Originally developed items and factors

- Explaining my thought process to my math instructor.

- Being asked a question by my math instructor.

- Explaining my thought process to a peer in my math class.

- Working in a group to solve a math problem.

- Working on a math problem for which I am not sure where to start.
- Being asked to support my algebraic reasoning with a picture.

- Explaining my thought process to my whole math class.

Table 7 Seven new items designed in (White & Visscher} [2015) to supplement the RMARS
with a few active and interactive classroom situations.
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FACTOR 2: Explanation Anxiety (4.01)

Explaining my thought process to my math instructor.

Being asked a question by my math instructor.

Explaining my thought process to a peer in my math class.
Explaining my thought process to my whole math class.

tBeing asked to support my algebraic reasoning with a picture.
tWorking on a math problem for which I am not sure where to start.

FACTOR 3: Problem Solving Anxiety (3.74)

Picking up math textbook to begin a difficult reading assignment.

+*Being given homework assignments of many difficult problems that are due the next class
meeting.

*Picking up math textbook to begin working on a homework assignment.

Working in a group to solve a math problem.

tWorking on a math problem for which I am not sure where to start.

tBeing asked to support my algebraic reasoning with a picture.

*Realizing you have to take a certain number of math classes to fulfill requirements.
*Opening a math or stat book and seeing a page full of problems.

0.97
0.92
0.84
0.77
0.41
0.32

0.94
0.88

0.75
0.54
0.43
0.41
0.34
0.33

Table 8 Two new factors from the RMARS + original 7 items, with eigenvalues and loadings.
Items that load on both factors are marked with a . Items from the RMARS instrument are
marked with an . The first factor in this analysis was Math Test Anxiety (eigenvalue 6.74),
the fourth factor was Numerical Task Anxiety (eigenvalue 3.51), and the fifth factor was Math
Course Anxiety (eigenvalue 3.45).

C Interaction of RMARS items with new factors

Reassigned to Problem Solving Anxiety
6. Being given homework assignments of many difficult problems that are due the next
class meeting.
11. Picking up math textbook to begin a difficult reading assignment.
13. Opening a math or stat book and seeing a page full of problems.

Items without a significant loading

5. Picking up math textbook to begin working on a homework assignment.
10. Realizing you have to take a certain number of math classes to fulfill requirements.
16. Reading a cash register receipt after your purchase.
21. Buying a math textbook.
22. Watching a teacher work on an algebraic equation on the blackboard.
23. Signing up for a math course.
24. Listening to another student explain a math formula.
25. Walking into a math class.

Table 9 RMARS items that loaded onto a different factor than originally reported in an
exploratory factor analysis of our data for the RMARS+MEARS instrument. Items that had
no factor loading exceeding .50 are listed as not having a significant loading.
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