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Abstract. Let γ be an orbit of the billiard flow on a convex planar billiard table; then the
perpendicular part of the derivative of the billiard flow along γ is a symplectic linear map DP .

This paper contains a proof of the following Franks’ lemma for a residual set of convex planar

billiard tables: for any closed orbit, the mapDP can be perturbed freely within a neighborhood
in Sp(1) by a C2-small perturbation in the space of convex planar billiard tables.

1. Introduction

The long-term behavior of orbits of diffeomorphisms or flows is of central importance in
dynamical systems. Given an orbit (or a “typical” orbit) γ, one would like to know not only
where γ travels in the ambient space, but also how close-by orbits behave. The derivative of
the diffeomorphism or flow along an orbit is an important object for studying the behavior of
close-by orbits. For an arbitrary orbit γ, Lyapunov exponents (when they exist) describe the
long-term linear behavior along γ; for a periodic orbit, these are simply the (logarithms) of the
eigenvalues of the derivative.

Given a closed orbit of a dynamical system, a natural question is how the derivative depends on
the system. For example, can one prescribe the derivative along a given orbit? A Franks’ lemma
is a tool that allows one to freely perturb the derivative in a neighborhood (in the appropriate
linear space) by perturbing the dynamical system (in the appropriate space of dynamics). The
name comes from a lemma of John Franks for diffeomorphisms in [11]. This utility of this kind of
result is that it relates perturbations in a complicated space (such as diffeomorphisms or flows)
with perturbations in a linear space. Franks’ lemmas have been proven in many different contexts:
for instance, [4] for conservative diffeomorphisms, [2], [12] and [1] for symplectomorphisms, [13]
and [5] for flows, [3] for conservative flows, [17] for Hamiltonians, and [9], [8], and [16] for geodesic
flows. Note that more restrictive settings often need to utilize tools specific to their setting—a
geodesic flow can be perturbed as a Hamiltonian flow, but the result may no longer be a geodesic
flow.

This paper contains a Franks’ lemma for convex planar billiards, using methods that the author
developed for geodesic flows in [16]. The general idea is that for geodesic flows, the derivative
of the flow along an orbit can be written in terms of Jacobi fields. Since the billiard flow is
induced by the geodesic flow on the plane, Jacobi fields take a particular form for convex planar
billiards, and they can be perturbed by small perturbations to the curvature of the billiard table
at the points where the orbit hits the boundary. In order to maintain control of the orbit while
making perturbations to its derivative, we regard only closed orbits that do not hit a point on the
boundary multiple times during one period. We show that there is a residual set of convex planar
billiard tables that have this property as well as a condition that can be described geometrically
as “no focusing along length-3 pieces of periodic orbits.” Given a table and a periodic orbit γ
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of the billiard flow, we call the period of γ the number of times γ hits the boundary of the table
before returning to its original vector. Then the following theorem states that the derivative of
the billiard flow along a periodic orbit of period at least 3 can be freely perturbed in a small
ball in the space of symplectic linear maps by making a small perturbation to the convex planar
billiard table in the C2 topology.

Theorem 1. There exists a residual set R of C2 convex planar billiards such that for any α ∈ R,
for any closed orbit γ of period at least 3, and for any C2 neighborhood U of α, there exists an
open ball B ⊂ Sp(1) around DP (γ, α) such that any element of B is realizable as DP (γ, α̃) for
some α̃ ∈ U . Moreover, the perturbation can be supported in an arbitrarily small neighborhood
of three sequential points of γ on the boundary of the table.

2. Preliminaries

A Cr billiard table is defined by a Cr embedding α : S1 → R2. Sometimes it is useful to
consider arc-length parametrization, which gives a map α : R/`Z→ R2, where ` is the length of
the image curve. By the Jordan Curve Theorem, the image of α separates the plane into two
regions, one of which is bounded—the closure of this region is defined to be the billiard table D.

A C2 billiard table D is convex if d2

dt2α 6= 0 and points into the interior of D everywhere; we follow

the convention that for such tables the curvature is positive. Let SDR2 denote the unit tangent
bundle on R2 restricted to D ⊂ R2, and let SD = SDR2/ ∼, where two points (x, v) and (x, v′)
are equivalent if x ∈ ∂D and v′ is the reflection of v across the line tangent to α at x. Then the
billiard flow ϕt : SD×R→ SD is induced by the geodesic flow on the plane. Since the dynamics
of the billiard flow is not dependent on where or how the table is positioned in the plane, we
will consider the set of curves modulo rigid motions of the plane and reparametrizations of the
defining curve. Let B denote the set of all such C2 convex billiard tables, modulo rigid motions
and reparametrizations, so that elements of B are equivalence classes [α] (see [6]).

A billiard table α of class C2 has a normal bundle (α(t),n(t)), where n(t) is the unit nor-
mal vector to α′(t) pointing into D, of class C1. For ε > 0, consider the following tubular
neighborhood of the image of α:

Nε(α) = {α(t) + λn(t) | − ε < λ < ε} ⊂ R2.

Definition 2. Two equivalence classes of convex billiard tables [α], [β] ∈ B are (C0) ε-close if
there exist representatives α ∈ [α] and β ∈ [β] such that the image of β is contained in Nε(α)
and the canonical projection β(t) 7→ α(t) is a diffeomorphism.

For two such representatives we can write β(t) = α(t) + λ(t)n(t), with λ a C2 periodic function.

Definition 3. [α] and [β] are ε C2-close if there are representatives α and β such that β(t) =
α(t) + λ(t)n(t) with ‖λ‖C2 < ε.

The behavior of a flow along an orbit can be studied by picking hypersurfaces transverse to
the flow and considering the maps that take one section to the next via the flow. In the context
of a billiard flow, there are two natural choices of transversals—one that regards the billiard flow
as induced by the geodesic flow on the plane, and a second that uses the property that there is
a global section of the billiard flow provided by the boundary of the table.

Following the first method, given an orbit γ of the billiard flow, pick surfaces Σt along γ in
SD that are perpendicular to the flow direction. For any two of these (say, at t = 0 and t = 1),
one gets a Poincaré map P : Σ0 → Σ1 via the billiard flow, defined in a neighborhood of the
origin (the point where γ intersects the surface). We are interested in the derivative of this map
at the origin, DP : T0Σ0 → T0Σ1. The map DP can be written nicely in Jacobi coordinates
(U, V ) on T0Σt, where U is the horizontal component of TSD restricted to T0Σt and V is the
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vertical componenet of TSD restricted to T0Σt. In these coordinates, the Poincaré map between
two interior sections is given by

T := DP =

[
1 τ
0 1

]
where τ is the distance between the two sections. At a point of reflection (on the boundary) the
derivative is given by

R := DP =

[
−1 0
2kp

cos θp
−1

]
where kp is the curvature at the point p of reflection (positive, since D is convex), and θp ∈
(−π/2, π/2) is the angle γ̇ makes with the unit normal vector n at p. (See, for instance, [7].1)
Since any linear Poincaré map in these coordinates is a product of matrices of the above types,
both of which have determinant 1, all such maps are elements of SL(2) = Sp(1).

A billiard flow also has a global section that every orbit must intersect repeatedly. Let C =
R/`Z×(−π/2, π/2) be the cylinder with first coordinate identified with the boundary of D under
α and second coordinate giving the angle of a vector with the normal vector n. Then the billiard
flow induces a map T : C → C taking a point (p, θ) to the next boundary point hit by the
trajectory determined by (p, θ), known as the billiard map. This map is more commonly studied
than the Poincaré map defined above, but their derivatives contain equivalent information: at
points along the boundary, DP and DT are related by the equations

U = cos θ dr and V = k dr + dθ,

where r is the arc-length parameter and θ is the angle with the unit normal n ([7]).

3. A residual subset of convex billiards

The proof of Theorem 1 requires that the initial billiard table have the property that there
is no focusing along length-3 segments of periodic orbits. In this section, we define a subset of
convex planar billiards that has this property, and show that it is a residual set. Recall that
the period of a periodic orbit γ of the billiard flow refers to the number of times γ hits the
boundary of the table before returning to its original point in SD, and let Tα be the billiard map
corresponding to the table defined by α.

Definition 4. Let R be the set of C2 convex billiards with the following properties:

(1) for each N > 0, there are a finite number of orbits of period N and they are all nonde-
generate;

(2) along each periodic orbit, each point of the boundary is hit at most once;
(3) at each point p along a periodic orbit

2kp
cos θp

6= 1

τ−
+

1

τ+
,

where τ− is the length of the incoming piece of orbit and τ+ is the length of the outgoing
piece of orbit.

Lemma 5. R contains a C2-residual subset of B.

Proof. The set UN = {α ∈ B : for all n|N, every period-n orbits ofTα is non-degenerate} is C2

open and C2 dense in B by Theorem 1 in [6].

1[18] and [10] are also good references, but they define θ as the angle with the tangent line to the table rather
than the inward normal. The resulting statements require a small translation to match the ones given here.
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Let U ′N = {α ∈ UN : for all n|N, period-n orbits have no multiple hit points}. Theorem 1 in
[14] shows that condition 2 is C2 dense, since it is C∞ dense. To show that U ′N is C2 open, recall
that a period-n orbit corresponds to a critical point of the function

(S1)n
αn

−→ R2n d−→ R,
where d assigns to each n-tuple of points on the boundary of the table α the distance traveled by
the straight-line path connecting each point in order ([15]). Since Dp(d ◦αn) = Dαn(p)d ◦Dpα

n,

the critical points of this map move continuously in (S1)n with α in the C1 topology. As the
set {(x1, . . . , xn) : xi 6= xj for all i, j} is open in (S1)n, the set of billiard tables in B without
multiple hit points along a finite number of closed orbits is open in the C1 (and therefore also
C2) topology.

Let U ′′N = {α ∈ U ′N : for alln|N, 2kp
cos θp

6= 1
τ−

+ 1
τ+

along per-n orbits}. Because α ∈ U ′N , there

are a finite number of period-n orbits. Thus, there are a finite number of points on α(S1) to
consider. Since we want to avoid a particular value of the curvature at each of these points, U ′′N
is also C2-open and C2-dense. Then taking the intersection

⋂∞
N=1 U ′′N gives a C2-residual subset

with the desired properties. �

The statement dp =
2kp

cos θp
6= 1

τ−
+ 1
τ+

in Definition 4 can be interpreted geometrically as there

being no focusing along this length-3 piece of orbit. To see this, observe that

T−RpT+ =

[
−1 + τ−dp −τ+ − τ− + τ+τ−dp

dp −1 + τ+dp

]
,

so that the Jacobi field defined by J(0) = 0, J ′(0) = 1 becomes[
J(τ− + τ+)
J ′(τ− + τ+)

]
= T−RpT+

[
0
1

]
=

[
−τ+ − τ− + τ+τ−dp

−1 + τ+dp

]
.

The Jacobi field is focused if J(τ− + τ+) = 0, or dp = 1
τ−

+ 1
τ+

.

Figure 1. Focusing along a billiard trajectory.

We require a billiard table to be in the setR in order to apply the proof techniques for Theorem
1 along a periodic orbit of period at least 3. This may be in part due to the techniques used,
but the following example shows that it is not always possible to freely perturb the derivative of
the billiard flow along any closed orbit on any table. Consider a period-2 orbit on a table where
the curvature at each point of the boundary that the orbit hits is equal to 1/τ , where τ is the
distance the orbit travels from one point on the boundary to the next. Making a perturbation
of the billiard table such that γ remains a periodic orbit can only change three quantities: the



A FRANKS’ LEMMA FOR CONVEX PLANAR BILLIARDS 5

curvatures k1 and k2 at p1 and p2, and the distance τ . By symmetry, however, perturbing the
curvature at p1 has the same effect to DP as perturbing the curvature at p2, so that there are
at most two directions in Sp(1) that one can move DP by perturbations of the billiard table
(a second direction would come from perturbing τ). Since dimSp(1) = 3, however, this is a
non-trivial restriction on how DP can be perturbed in Sp(1).

Figure 2. An example in which, even allowing for perturbations to τ , one
cannot freely perturb DP in Sp(1).

4. Proof of Theorem 1

The following arguments are based on methods developed in [16] for geodesic flows. In that
context, the arguments produce a perturbation size that was uniform over all length-1 geodesic
on the manifold. In this context, due to the fact that length refers to the number of times an
orbit segment hits the boundary of the billiard table (rather than the length of the segment in
the billiard flow), there is no such uniformity. In particular, as the τi get smaller (e.g., take a
sequence of orbits that accumulate on the boundary of the table), the effects of the curvature
perturbations get smaller.

Fix α, U , and γ. In order to prove Theorem 1, it suffices to make perturbations to just one
length-3 piece of the periodic orbit. Then the theorem is proved by using following lemma to
perturb the linear Poincaré map along a length-3 piece of orbit:

Lemma 6. Let α ∈ B, and γ be an orbit segment of length 3 with p1 6= p3 and d2 6= 1
τ2

+ 1
τ3

.

Then for any C2 neighborhood U of α there exists an open ball B ⊂ Sp(1) about DP (γ, α) such
that any element of B is realizable as DP (γ, α̃) for some α̃ ∈ U .

Proof. For a fixed neighborhood U of α, there is a ball of some radius ε, infq∈α{ 12kα(q)} > ε > 0,
contained in U . By Lemma 7 below, this means that we can perturb the curvature at any point
by size up to ε > 0 while preserving γ as a piece of orbit.

Now we wish to show that any element of Bδ(DP (γ, α)) (for some δ) can be realized as the
linear Poincaré map along γ by making size ε or smaller perturbations of the curvature of the
table at the three points γ hits. The map A = DP (γ, α) can be written as

A =

[
−1 0
d3 −1

] [
1 τ3
0 1

] [
−1 0
d2 −1

] [
1 τ2
0 1

] [
−1 0
d1 −1

] [
1 τ1
0 1

]
where di = 2ki

cosφi
. Perturbing the curvatures k1, k2, and k3 is, in effect, perturbing d1, d2,

and d3 since the tangent lines and therefore the angles φi are preserved by the perturbations of
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Lemma 7. We want to make sure that these three perturbations move the map DP in distinct
directions in Sp(1). By Lemma 8 below, the matrices ∂

∂d1
DP , ∂

∂d2
DP , and ∂

∂d3
DP are linearly

dependent only if d2 = 1
τ2

+ 1
τ3

; but d2 6= 1
τ2

+ 1
τ3

by hypothesis.

Let K = {(kp1 , kp2 , kp3)} ∼= R3 be the space of curvatures at the points p1, p2, and p3 respec-
tively, and let Φ : K → Sp(1) be the map that assigns to each (kp1 , kp2 , kp3) the product DP .
By the arguments above, this map has full rank at k = (k1, k2, k3), so by the Inverse Function
Theorem Φ is a local diffeomorphism and the image of a neighborhood of k under Φ contains an
open ball about DP (γ, α). �

Lemma 7. Let p be a point on the billiard table α with curvature kα(p). Then there exists εα > 0
such that for any εα > ε > 0, for any k ∈ R with |k − kα(p)| < ε, and for any neighborhood
V ⊂ α(S1) of p, there is a perturbation α̃ with the following properties:

(1) kα̃(p) = k,
(2) α = α̃ outside of V ,
(3) α̃ ∈ B (i.e. is a C2 convex billiard table), and
(4) ‖α− α̃‖C2 < ε.

Proof. Let εα = infq∈α{ 12kα(q)}. Fix a parametrization of α with α(0) = p, and let δ > 0 such
that α(−δ, δ) ⊂ V . Let ψ : R→ R be a smooth function with the following properties:

(1) supp (ψ) = (−δ, δ)
(2) ‖ψ‖C2 ≤ ε
(3) ψ(0) = ψ′(0) = 0
(4) ψ′′(0) = k − kα(p)

Let α̃(t) = α(t) + ψ(t)n(t). Then

kα̃(p) = kα(p) + ψ′′(0) = k,

and ‖α− α̃‖C2 = ‖ψ‖C2 ≤ ε. Since ε < εα, we have α̃ ∈ B. Moreover, since ψ(0) = ψ′(0) = 0,
the table α̃ still goes through the point p and has the same tangent line as α at p. �

Lemma 8. The matrices A = ∂
∂d1

DP , B = ∂
∂d2

DP , and C = ∂
∂d3

DP are linearly dependent if

and only if d2 = 1
τ2

+ 1
τ3

.

Proof. Multiplying out DP and taking derivatives yields

A =

[
τ2 + τ3 − τ2τ3d2 (τ2 + τ3 − τ2τ3d2)τ1

1− (d2 + d3)τ2 − τ3d3 + τ2τ3d2d3 (1− (d2 + d3)τ2 − τ3d3 + τ2τ3d2d3)τ1

]
B =

[
(1− τ2d1)τ3 (τ1 + τ2 − τ1τ2d1)τ3

1− τ2d1 − τ3d3 + τ2τ3d1d3 (1− τ2d1 − τ3d3 + τ2τ3d1d3)τ1 + τ2 − τ2τ3d3

]
C =

[
0 0
c cτ1 + τ2 + τ + 3− τ2τ3d2

]
,

where c = 1 − (d1 + d2)τ3 − τ2d1 + τ2τ3d1d2. Linear dependency requires αA + βB + γC = 0,
with α, β, γ not all 0. This yields four equations, which are satisfied simultaneously if and only if

d2 = 1
τ2

+ 1
τ3

, α =
γτ2

3

τ2
2

, and β = 0 (also if any τi = 0, but these cases describe degenerate orbits

and thus are not relevant). �
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